Quantum Logic in Dagger Categories with Kernels

نویسندگان

  • Chris Heunen
  • Bart Jacobs
چکیده

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and and-then connectives are obtained, as adjoints, via the existential-pullback adjunction between fibres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Logic in Dagger Kernel Categories

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categori...

متن کامل

Dagger Categories of Tame Relations

Within the context of an involutive monoidal category the notion of a comparison relation cp : X ⊗X → Ω is identified. Instances are equality = on sets, inequality ≤ on posets, orthogonality ⊥ on orthomodular lattices, non-empty intersection on powersets, and inner product 〈− |−〉 on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category...

متن کامل

Daggers, Kernels, Baer *-semigroups, and Orthomodularity

We discuss issues related to constructing an orthomodular structure from an object in a category. In particular, we consider axiomatics related to Baer *-semigroups, partial semigroups, and various constructions involving dagger categories, kernels, and biproducts.

متن کامل

Natural language semantics in biproduct dagger categories

Biproduct dagger categories serve as models for natural language. In particular, the biproduct dagger category of finite dimensional vector spaces over the field of real numbers accommodates both the extensional models of predicate calculus and the intensional models of quantum logic. The morphisms representing the extensional meanings of a grammatical string are translated to morphisms represe...

متن کامل

A link between quantum logic and categorical quantum mechanics

Abramsky and Coecke (Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425, IEEE Comput. Soc., New York, 2004) have recently introduced an approach to finite dimensional quantum mechanics based on strongly compact closed categories with biproducts. In this note it is shown that the projections of any object A in such a category form an orthoalgebra ProjA. Suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009